
NARSIMHA REDDY ENGINEERING COLLEGE
(Autonomous)

Approved by AICTE, NewDelhi & Affiliated to JNTUH, Hyderabad
Accredited by NBA&NAAC with A Grade

SCRIPTING LANGUAGES

By
G Sunil Kumar

Assistant Professor
Department of CSE

Compilation vs. Interpretation

• Compilation vs. interpretation
– not opposites
– no absolute distinction

Compilation vs. Interpretation

• Pure compilation
– compiler translates source program into

equivalent target program, then goes away
– often high-level language (source code)

translated to machine language (object code)
– OS later executes target program on machine
– target program is locus of control

Compilation vs. Interpretation

• Pure interpretation
– interpreter stays around for execution of

program
– interpreter is locus of control during execution
– interpreter implements virtual machine

Compilation vs. Interpretation

• Interpretation
– greater flexibility
– better error messages (e.g., good source-level

debugger)
– dynamically create code and then execute it

• Compilation
– better performance

Compilation vs. Interpretation

• Most language implementations mix
compilation and interpretation

• Common case compilation or pre-
processing – followed by interpretation

Compilation vs. Interpretation

• Compilation not required to produce machine code
for hardware

• Compilation translates one language into another,
fully analyzing input’s meaning

• Compilation requires semantic understanding of input
• Preprocessing does not require semantic

understanding, allows some errors through
• Compiler hides subsequent steps
• Preprocessor does not hide subsequent steps

Compilation vs. Interpretation

• Compiled languages have interpreted features
– input/output formats

• Compiled languages may use “virtual
instructions”
– set operations
– string operations

• Compiled languages might only produce
virtual instructions, e.g., Java byte code

Compilation vs. Interpretation

• Implementation strategy: Preprocessor
– removes comments and white space
– groups characters into tokens (keywords, identifiers,

numbers, symbols)
– expands abbreviations and textual macros
– identifies higher-level syntactic structures (loops,

subroutines)
– preserves structure of source in intermediate form

Compilation vs. Interpretation

• Implementation strategy: Library and linking
– compiler uses linker program to merge appropriate

subroutines from library

Compilation vs. Interpretation

• Implementation strategy: Post-compilation
assembly
– facilitates debugging (assembly easier to read)
– isolates compiler from changes in format of machine

code files (e.g., between OS releases)

Compilation vs. Interpretation

• Implementation strategy: Conditional
compilation
– preprocessor deletes portions of code, several program

versions share same source
– e.g., C’s preprocessor

Compilation vs. Interpretation

• Implementation strategy: Source-to-source
translation
– generate intermediate program in another language

(e.g., C++ to C, various to JavaScript)

Compilation vs. Interpretation

• Implementation strategy: Compilation of
interpreted languages
• Compiler generates code guessing about runtime

circumstances
• If correct, code is fast
• If not, dynamic check reverts to normal interpreter

Compilation vs. Interpretation

• Implementation strategy: Bootstrapping

Compilation vs. Interpretation

• Implementation strategy: Dynamic and Just-in-
Time compilation
– Deliberately delay compilation until last possible moment

• compile source code on the fly – dynamically created source --
optimize program for particular input

• use machine-independent intermediate code but compile to
machine code when executed (e.g., Java just-in-time-
compiler, .NET CIL)

Compilation vs. Interpretation

• Implementation strategy: Microcode
• Assembly-level instruction set not implemented in

hardware; runs on interpreter.
• Interpreter written in low-level instructions

(microcode or firmware), stored in read-only
memory, executed by hardware

Compilation vs. Interpretation

• Compilers exist for some interpreted languages, but
not pure
– selective compilation of part + sophisticated preprocessing

of rest
– interpretation of part still necessary for reasons above

• Unconventional compilers
– text formatters
– silicon compilers
– query language processors

Programming Environment Tools

• Tools

An Overview of Compilation

• Phases of Compilation

An Overview of Compilation

• Lexical Analysis (Scanning)
– recognize regular language using DFA
– take input character stream
– divide program into "tokens", smallest meaningful

units to save time (char-by-char processing slow)
– recognize identifiers, constants, keywords,

operators
– produce token stream
– do simple tasks early to reduce complexity later

An Overview of Compilation

• Syntax Analysis (Parsing)
– recognize context-free language (CFG) using PDA
– take token stream (but could take character stream with

no scanner, might be quite messy)
– discover context-free grammatical structure of program
– output error messages
– produce concrete syntax (parse) tree

An Overview of Compilation

• Intermediate form (IF)
– produced if no errors in syntax or static “semantics”
– machine code for idealized machine; e.g. stack machine or

with unlimited number of registers
– chosen to balance machine independence, ease of

optimization, ease of translation to final form, compactness
– might use several intermediate forms
– use abstract syntax trees and symbol table in our

interpreters

An Overview of Compilation
• Machine-independent optimization

– take intermediate-code program, optionally produce
equivalent but “better” program – faster, smaller, etc.

– improve code, not really optimize
– produce another intermediate form program
– examples: common subexpression elimination, copy

propagation, dead code elimination, loop
optimizations, in-line function calls, tail recursion
optimization

An Overview of Compilation

• Code generation
– produce assembly language or relocatable machine

language from intermediate form and symbol table
– assign memory locations, registers, etc.

• Machine-specific optimization
– take output of code generation
– Optionally improve using specific details of machine,

e.g., special instructions, addressing modes, co-
processors

An Overview of Compilation

• Symbol table
– track information about identifiers throughout all phases
– may be (partially) retained to support debugging, error

recovery, reflection/metaprogramming

An Overview of Compilation

• Lexical and Syntax Analysis: GCD
program (in C)

int main() {
int i = getint(), j = getint();
while (i != j) {
if (i > j) i = i - j;
else j = j - i;
}
putint(i);
}

An Overview of Compilation

• Lexical and Syntax Analysis: GCD program
tokens
– Lexical analysis (scanning) and parsing recognize

structure of program, group characters into tokens

int main () {
int i = getint () , j = getint () ;
while (i != j) {
if (i > j) i = i - j ;
else j = j - i ;
}
putint (i) ;
}

An Overview of Compilation

An Overview of Compilation

• Context-Free Grammar and Parsing:
Example (while loop in C)

iteration-statement → while (expression) statement

statement, in turn, is often a list enclosed in braces:
statement → compound-statement
compound-statement → { block-item-list opt }
where
block-item-list opt → block-item-list
or
block-item-list opt → ϵ
and
block-item-list → block-item
block-item-list → block-item-list block-item
block-item → declaration
block-item → statement

An Overview of Compilation
• Context-Free Grammar and Parsing: GCD

Program Parse Tree

next slide

A

B

An Overview of Compilation
• Context-Free Grammar and Parsing (continued)

An Overview of Compilation
• Context-Free Grammar and Parsing (continued)

A B

An Overview of Compilation

• Syntax Tree: GCD Program Parse Tree

Ruby (on Rails)

G Sunil Kumar
 M.Tech
Assistant Professor

Dept. of CSE
 Narsimha Reddy Engineering College

Hyderabad

About the Section

• Introduce the Ruby programming language
• Use Ruby to template web pages
• Learn about Ruby on Rails and its benefits

What is Ruby?

• Programming Language
• Object-oriented
• Interpreted

Interpreted Languages

• Not compiled like Java
• Code is written and then directly executed by

an interpreter
• Type commands into interpreter and see

immediate results

ComputerRuntime
EnvironmentCompilerCodeJava:

ComputerInterpreterCodeRuby:

What is Ruby on Rails (RoR)

• Development framework for web applications
written in Ruby

• Used by some of your favorite sites!

http://rubyonrails.org/applications

Advantages of a framework

• Standard features/functionality are built-in
• Predictable application organization
– Easier to maintain
– Easier to get things going

Installation
• Windows
– Navigate to: http://www.ruby-lang.org/en/downloads/
– Scroll down to "Ruby on Windows"
– Download the "One-click Installer"
– Follow the install instructions
• Include RubyGems if possible (this will be necessary for Rails

installation later)

• Mac/Linux
– Probably already on your computer
– OS X 10.4 ships with broken Ruby! Go here…
• http://hivelogic.com/articles/view/ruby-rails-mongrel-mysql-

osx

http://www.ruby-lang.org/en/downloads/
http://hivelogic.com/articles/view/ruby-rails-mongrel-mysql-osx
http://hivelogic.com/articles/view/ruby-rails-mongrel-mysql-osx

hello_world.rb

puts "hello world!"

puts vs. print

• "puts" adds a new line after it is done
– analogous System.out.println()

• "print" does not add a new line
– analogous to System.out.print()

Running Ruby Programs

• Use the Ruby interpreter
ruby hello_world.rb

– “ruby” tells the computer to use the Ruby
interpreter

• Interactive Ruby (irb) console
irb

– Get immediate feedback
– Test Ruby features

Comments
this is a single line comment

=begin
this is a multiline comment
nothing in here will be part of the code

=end

Variables

• Declaration – No need to declare a "type"
• Assignment – same as in Java
• Example:

x = "hello world" # String
y = 3 # Fixnum
z = 4.5 # Float
r = 1..10 # Range

Objects
• Everything is an object.
– Common Types (Classes): Numbers, Strings, Ranges
– nil, Ruby's equivalent of null is also an object

• Uses "dot-notation" like Java objects
• You can find the class of any variable

x = "hello"
x.class String

• You can find the methods of any variable or class
x = "hello"
x.methods
String.methods

Objects (cont.)

• There are many methods that all Objects have
• Include the "?" in the method names, it is a

Ruby naming convention for boolean methods
• nil?
• eql?/equal?
• ==, !=, ===
• instance_of?
• is_a?
• to_s

Numbers

• Numbers are objects
• Different Classes of Numbers
– FixNum, Float

3.eql?2 false
-42.abs 42
3.4.round 3
3.6.rount 4
3.2.ceil 4
3.8.floor 3
3.zero? false

String Methods
"hello world".length 11

"hello world".nil? false

"".nil? false

"ryan" > "kelly" true

"hello_world!".instance_of?String true

"hello" * 3 "hellohellohello"

"hello" + " world" "hello world"

"hello world".index("w") 6

Operators and Logic

• Same as Java
– Multiplication, division, addition, subtraction, etc.

• Also same as Java AND Python (WHA?!)
– "and" and "or" as well as "&&" and "||"

• Strange things happen with Strings
– String concatenation (+)
– String multiplication (*)

• Case and Point: There are many ways to solve
a problem in Ruby

if/elsif/else/end

• Must use "elsif" instead of "else if"
• Notice use of "end". It replaces closing curly

braces in Java
• Example:

if (age < 35)
puts "young whipper-snapper"

elsif (age < 105)
puts "80 is the new 30!"

else
puts "wow… gratz..."

end

Inline "if" statements

• Original if-statement
age=100
if age < 105

puts "don't worry, you are still young"
end

• Inline if-statement
age=95
puts "don't worry, you are still young" if age < 105

for-loops

• for-loops can use ranges
• Example 1:

for i in 1..10
puts i

end

• Can also use blocks (covered next week)
3.times do

puts "Ryan! "
end

for-loops and ranges

• You may need a more advanced range for your
for-loop

• Bounds of a range can be expressions
• Example:

for i in 1..(2*5)
puts i

end

while-loops

• Can also use blocks (next week)
• Cannot use "i++"
• Example:

i = 0
while i < 5

puts i
i = i + 1

end

unless

• "unless" is the logical opposite of "if"

• Example:
unless (age >= 105) # if (age < 105)

puts "young."
else

puts "old."
end

until

• Similarly, "until" is the logical opposite of
"while"

• Can specify a condition to have the loop stop
(instead of continuing)

• Example
i = 0
until (i >= 5) # while (i < 5), parenthesis not
required

puts I
i = i + 1

end

Methods

• Structure
def method_name(parameter1, parameter2, …)

statements
end

• Simple Example:
def print_ryan

puts "Ryan"
end

Parameters
• No class/type required, just name them!
• Example:

def cumulative_sum(num1, num2)
sum = 0
for i in num1..num2
sum = sum + i
end
return sum

end

call the method and print the result
puts(cumulative_sum(1,5))

Return

• Ruby methods return the value of the last
statement in the method, so…

def add(num1, num2)
sum = num1 + num2
return sum

end

can become
def add(num1, num2)

num1 + num2
end

User Input

• "gets" method obtains input from a user
• Example

name = gets
puts "hello " + name + "!"

• Use chomp to get rid of the extra line
puts "hello" + name.chomp + "!"

• chomp removes trailing new lines

Changing types

• You may want to treat a String a number or a
number as a String

• to_i – converts to an integer (FixNum)
• to_f – converts a String to a Float
• to_s – converts a number to a String

• Examples
"3.5".to_i 3
"3.5".to_f 3.5
3.to_s "3"

Constants

• In Ruby, constants begin with an Uppercase
• They should be assigned a value at most once
• This is why local variables begin with a

lowercase
• Example:

Width = 5
def square

puts ("*" * Width + "\n") * Width
end

References

• Web Sites
– http://www.ruby-lang.org/en/
– http://rubyonrails.org/

• Books
– Programming Ruby: The Pragmatic Programmers'

Guide (http://www.rubycentral.com/book/)
– Agile Web Development with Rails
– Rails Recipes
– Advanced Rails Recipes

http://www.ruby-lang.org/en/
http://rubyonrails.org/
http://www.rubycentral.com/book/

Package Management with RUBYGEMS
 RubyGems is a standardized packaging and

installation framework for libraries and
applications, making it easy to locate, install,
upgrade, and uninstall Ruby packages.

 It provides users and developers with four
main facilities

1. A standardized package format,
2. A central repository for hosting packages in this format,
3. Installation and management of multiple, simultaneously

installed versions of the same library
4. End-user tools for querying, installing, uninstalling, and

otherwise manipulating these packages.

 In the RubyGems world, developers bundle
their applications and libraries into single files
called gems.

 These files conform to a standardized format,
and the RubyGems system provides a
command-line tool, appropriately named gem,
for manipulating these gem files.

Installing Ruby Gems
 To use RubyGems, we need to download and

install the RubyGems system from the
project’s home page at
http://rubygems.rubyforge.org.

 After downloading and unpacking the
distribution, we can install it using the
included installation script

http://rubygems.rubyforge.org/

	Slide 1
	Compilation vs. Interpretation
	Compilation vs. Interpretation (2)
	Compilation vs. Interpretation (3)
	Compilation vs. Interpretation (4)
	Compilation vs. Interpretation (5)
	Compilation vs. Interpretation (6)
	Compilation vs. Interpretation (7)
	Compilation vs. Interpretation (8)
	Compilation vs. Interpretation (9)
	Compilation vs. Interpretation (10)
	Compilation vs. Interpretation (11)
	Compilation vs. Interpretation (12)
	Compilation vs. Interpretation (13)
	Compilation vs. Interpretation (14)
	Compilation vs. Interpretation (15)
	Compilation vs. Interpretation (16)
	Compilation vs. Interpretation (17)
	Programming Environment Tools
	An Overview of Compilation
	An Overview of Compilation (2)
	An Overview of Compilation (3)
	An Overview of Compilation (4)
	An Overview of Compilation (5)
	An Overview of Compilation (6)
	An Overview of Compilation (7)
	An Overview of Compilation (8)
	An Overview of Compilation (9)
	An Overview of Compilation (10)
	An Overview of Compilation (11)
	An Overview of Compilation (12)
	An Overview of Compilation (13)
	An Overview of Compilation (14)
	An Overview of Compilation (15)
	Slide 35
	About the Section
	What is Ruby?
	Interpreted Languages
	What is Ruby on Rails (RoR)
	Advantages of a framework
	Installation
	hello_world.rb
	puts vs. print
	Running Ruby Programs
	Comments
	Variables
	Objects
	Objects (cont.)
	Numbers
	String Methods
	Operators and Logic
	if/elsif/else/end
	Inline "if" statements
	for-loops
	for-loops and ranges
	while-loops
	unless
	until
	Methods
	Parameters
	Return
	User Input
	Changing types
	Constants
	References
	Package Management with RUBYGEMS
	Slide 67
	Installing Ruby Gems

